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COMMON-PATti HETERODYNE LASER-INDUCED THERMAL ACOUSTICS

FOR SEEDLESS LASER VELOCIMETRY

ROGI'R C. HART', G. C HERRING*, ?,yl) R. JEI:FREY BALLA _

Abstract. We demonstrate the use of a novel technique for the detection of heterodyne laser-induced

thermal acoustics signals, which allows the construction of a highly stable seedless laser velocimeter. A common-

path configuration is combined with quadrature detection to provide flow direction, greatly improve robustness to

misalignment and vibration, and give reliable velocity measurement at low flow velocities. Comparison with Pitot

tube measurements in the freestream of a windtunnel shows root-mean-square errors of 0.67 rrVs over the velocity

range 0 - 55 m/s.
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1. Introduction. Non-intrusive optical methods for measuring fluid flow velocity are of great importance

to the experimental fluid dynamics and aerodynamics communities. However, the only optical velocimetry methods

to have found wide use, laser doppler velocimetry [ I] and particle image velocimetry [2], require the introduction of

small (- I _m diameter) seed particles into the flow to serve as light scalterers. Seeding is not feasible in some wind

tunnels due to concerns over removal of spent seed, clogging of flow-straightening screens, or abrasion of finely

polished surfaces. Additionally, there are regions in airflows of interest, such as vortices over delta wings or behind

leading-edge slats, where useful seed concentrations are difficult or impossible to achieve. Thus a need exists for a

seedless laser velocimetry method. Previous work has demonstrated the potential of laser-induced thermal acoustics

(LITA) to fill this need [3-6]. However, none of the approaches employed so far for heterodyne detection appears

suitable for routine use in environmentally adverse windtunnel environments by workers who are not highly skilled

optics researchers. Here we demonstrate a novel means of implementing LITA velocimetry that has the intrinsic

stability and robustness to allow the construction of a useful, fieldable instrument.

2. Theory of LITA Signal Detection. LITA is a pump-probe process: a pump laser creates a periodic

perturbation in the medium, which serves to diffract the beam of a probe laser to a detector. In our apparatus the

beam of a Q-switched Nd:YAG laser operating at wavelength _'p,,,,,l, = 1064 nm is split by a 50/50 beamsplitter to

produce two pump beams which are made to focus and cross at a single point at angle 20 = 1.4 by a lens (Fig. 2.1 ).
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Interference fringes of period A = kp,,,,,p/2 sin0 are fonrled at the beam intersection. As the laser wavelength is not

resonant with any absorptive transition in the medium (air) the only optical interaction is electrostriction, which

creates two counter-propagating acoustic waves or gratings traveling in the +.{" direction at speed of sound v s with

respect to the medium. The acoustic wavelength is equal to the optical fringe spacing and the frequency

.IB = Vs / A is about 7.8 MHz at room temperature. The beam of the CW probe laser at wavelength kp,.,,/,,,= 532 nm

Pump B Lens

Probe

Acoustic

Gratings

0

A C

Fl_. 2.1. Beam croxsing geomelo" and schematic of detection schente. A: attenuator; B: beamstop," C: Focal,edeteclor plane,
L 0." loc.I oscillator beam.

is incident on the waves at the Bragg or phase-matching angle (I)where A = 7.p,.ol,,./2sind _ . The signal beam is

diffracted at angle (l) (Fig. 2.1) with Doppler shifts AO_ = -q-(v,o,, - Vs) and A(o = -_-(_,,,,, + _s ) due to the

motion of the gratings, where _,..... is the flow velocity, i;s = vs.(', and _ = q._ is the acoustic grating vector with

q = 2n/A.

2.1. Collinear Local Oscillator Method. The simplest implementation of LITA velocimetry (not shown)

requires the introduction of a local oscillator (LO) beam collinear with the signal with the same frequency o) as the

probe. The field is

(2.1) A(t) = At. o exp(icot)+ Ase l_,(exp(i((o + Ao) t))+ exp(i(o) + Ao)_ t)))+ c.c..



where At.o and A s are the real amplitudes respectively of the LO and signal beams, 13= (x vs with c_ the acoustic

amplitude absorption coefficient [7], and c.c. means complex conjugate. Averaging over a time long compared to

the optical period but short compared to 1([_ and integrating over the area of the bearns, the lime dependence of the

detected power is

(2,2) P(t)= A_o + 2ALoAse [_'[cos(Ao.) t)+cos(A(o t)],

where we assume ALO >> A s lbr shot-noise-limited detection and so neglect the term ,y. A_. Neglecting also the

DC tenn, the real part PR ((_') of the Fourier transform of P(t) is a sum of four Lorentzians

I 13 ): + 13 )-'I"(2.3) PR(G)=2AL°As 132 +(oS+A(o 13-"+(oS+A(o

with peaks at +A(o and +A(o . Although the Doppler shifts are signcd quantities, the detected heterodyne signal

contains information only on the absolute values. Analysis (e.g. discrete Fourier transtbrm or time domain fitting

via Levenburg-Marquardt or Prony's method [6]) of real-valued data described by Eq. 2.2 thus allows independent

determination only of ]Aco [and ]Ao_. ], yielding v s and Iv/..[, where v: = _. _,,,,, is the component of flow velocity

along _.

Laboratory evaluation of this collinear LO method of implementing LITA velocimetry [6] revealed the

following disadvantages: 1 ) proper alignment of the LO and signal beams is difficult to achieve and maintain; 2) the

apparatus is very sensitive to vibration since the signal and LO beam must follow different paths on different optics;

3) no direct means of determining flow direction is available since only the absolute values of A{o and A_o, are

available as shown above: 4) both accuracy and precision are very poor for flow velocities less than _20 m/s due to

the difficulty of accurately discriminating the nearly degenerate frequencies [A(o [ and IA,o I in the presence of

noise. Although various technical means of ameliorating these difficulties are available, this approach seemed

unsuitable to be the basis of a robust instrument with a useful velocity dynamic range.

2.2. Grating Demodulation with Quadrature Detection. A solution to these four problems was found

with two modifications: a non-collinear geometry, and quadrature detection. A lens recrosses and retbcuses the

signal and attenuated probe beams in plane C (Fig. 2. I.). Assuming for simplicity unit magnification, the field at C

is

(2.4) A(t) = A:. o exp (i(k-Lo-F-(,) t))+

,,,o.. (,(k-, <,o+ ),))+
Ase "'exp (i(/<-s '/: --<co + A,o )t))+ c.c ,



where /_Lo and /_s are the wavevectors for LO and signal beams with _'Lo,s = 2n/k p,.,,i,e. With _'Lo -ks = q (due

to the phase matching between pump and probe), and neglecting the term _ A s , the intensity in plane C is then

(2.5) I(x,t) = A_o + 2ALoAse _t [cos(qx + Am t)+ cos(qx + Am j)],

which describes interference fringes of spatial period A traveling at speeds Am+/q-- v F -v_and

Am /q = v F + v.,. ; that is, the lens produces an image of the acoustic waves'. No modulation at frequencies

Am and Am_ would be seen by a broad-area detector (width >> A ) placed at C. However, ifa series of slits (e.g.

a Ronchi ruling) parallel to the fringes with period A = 2D is placed on the surface of the detector (Fig. 2.2) the

modulation is recovered as bright fringes pass alternately across transparent and opaque regions. We refer to this

detection scheme as grating demodulation. Taking advantage of the equal periodicities of the fringes and the

Ronchi ruling, the time dependence of the detected power P(t) may be written

J+D(2.6) P(t) = F l(x,t)dr
•l a

where F is a constant accounting for the number of fringes and the height of the beams, and a specifies the

transverse location (phase) of the ruling with respect to an arbitrary origin (Fig. 2.2). After some manipulation one

finds

(2.7)
-}

P(t) = bAfo

- 2cALo A s e-[_' (sin(q))cos(Am t)+ cos(tp)sin(Am_t))

- 2cmLo Ase-l_ ' (sin(cp)cos(Am+t) + cos(q_)sin(Am +t)),

°_

u

\

a

Fi(;. 2.2. Phme _" in Fig. 2.1 showing Ronchi rtding (thick lines) and one traveling fi'inge pattern

/



where q_ = rta/D and h and c are constants. Thus by shifting the ruling transverse to the optical axis (changing a)

the phase of the modulation in the signal may be varied; this is" equivalent to smiling the phase of the local

oscillator. This provides a convenient means tbr implementing dual-channel phase-sensitive detection with two

phases of the LO differing by 90 °, known as quadrature detection. If the converging signal and kO beams (Fig. 1)

are divided by a suitable beamsplitter so that two separate beam intersections are formed on two separate rulings and

detectors, then by setting the relative transverse shill between the rulings to A/4 both quadrature components of the

signal may be recovered simultaneously. That is, tbr channel P,(t) let a = 3l)/2 in Eq. 2 and for channel Pgo(t)

a = D, giving

(2.8) e,I,_: bA_o+2cA.,A_ _'(cos(A,o,)+cos(Ao,,)),
P,_,,(t)=hA_.o +2CALoAse-_'(sin(Ao)t)+sin(Ao_t))_

Forming the complex signal Z(t)= P,(t)+ iPgo(t), we find the real part of the Fourier transform now consists of

only two Lorentzians

(2.9) ZR(c'S) = 2cAt°As _2 +(c_'-A¢o +(oS-Ao)

with peaks at Ao_ and Ao__. Thus analysis of Z(t) can recover the sign as well as magnitude of the Doppler shifts

(Fig. 2.3). For v r = 0 the spectral peaks occur at c_ = +qv s = +_ =: +2nf_; as v r varies the peaks will shift

simultaneously towards more positive or more negative frequency (depending on the flow direction) but will

maintain the separation 2co_. Flow and sound velocities are found asv F = (A_o, +AoJ )/2q and

vs = (Ao_ - Aco )/2q. Note that Mach number M = v r/v s is independent of q, so if flow temperature and thus

1.0
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v s are known vF may be found without calibration of A.

This grating demodulation/quadrature detection scheme remedies the defects found in the collinear LO

method. Since signal and LO beams are incident on the same optics (common path), detection is intrinsically stable

against both misalignment and vibration. Flow direction is found directly. Resolution at low velocities is greatly

improved since the frequencies A(o and A0_, are no longer nearly degenerate.

3. Experimental Results. A compact velocimeter employing this detection scheme was used at NASA

Langley Research Center's Basic Aerodynamics Research Tunnel to map the flow behind a rearward-facing step [8].

As part of this program, multiple comparisons of freestream velocity VLrrA (average of-350 shots) measured by

LITA with freestream velocity V_,ito,measured by Pitot tube were acquired (Fig. 3.1). Defining error as Vpi,o,-VLNA,

the root-mean-square error (RMSE) of this data set is 0.67 m/s. For Vvilo, > 30 m/s and for Ve_,o,= 0, the RMSE is

< 0.4 rrvs, while for intermediate velocities RMSE is 0.84 m/s. Note that a velocity of 1 m/s corresponds here to a

Doppler shift of 23 kHz in a carrier frequency of 5.6 x 1014 Hz.

We have demonstrated an elegant, intrinsically stable means of performing heterodyne L1TA velocimetry with

quadrature detection that will allow the construction of a robust seedless laser velocimeter.
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